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In the McKean model the BBGKY hierarchy is equivalent to a simple hierarchy 
of coupled equations for the p-particle correlation functions. Approximate 
solutions are obtained by truncating the hierarchy. The convergence of the trun- 
cation method is studied by comparison with the exact solution for the model, 
which can be given in closed form. In the long-time limit the exact solution is 
linearized around the equilibrium value, showing the decay of the correlations. 
It turns out that p-particle correlations decay p times faster than the non- 
equilibrium one-particle distribution= 
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1. I N T R O D U C T I O N  

The time evolution of a many-particle system is completely described by 
the BBGKY hierarchy for the reduced distribution functions. (1) To 
calculate observables of the system, one must truncate the hierarchy 
somewhere to close the set of equations. This is done in most cases after the 
first equation, because coupled nonlinear integrodifferential equations are 
hard to handle. If the p-particle distribution function is represented in 
clusters of one-particle distribution functions and correlation functions, 
truncation after the first equation means neglecting the two-particle 
correlations, as in the famous Boltzmann equation. The quality of this 
approximation can be tested in most cases only empirically. 

It is assumed, however, (2) that for a description of a many-particle 
system near the equilibrium (t ~ oe) the correlations are no longer impor- 
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tant, because they decay much faster than the one-particle distribution 
function tends to the equilibrium. Therefore, it seems important to test this 
assumption in simple models where also the higher hierarchy equations can 
be solved. The McKean model, briefly described in Section 2, is one of the 
simplest, nontrivial models of a many-particle system where questions such 
as entropy production and the evolution of molecular chaos have already 
been studied. (3) 

In this paper we go far beyond the assumption of molecular chaos. In 
Section 3, we obtain the BBGKY hierarchy of the McKean model and 
describe the reduced distribution functions in a cluster representation. (') In 
the limit of large particle numbers these equations are transformed in Sec- 
tion 4 into a hierarchy for the correlation functions. It is also possible to 
obtain an exact solution for the reduced distribution functions in this 
limit(4 6); this is reviewed in Section 5. The fixed points of the coupled 
equations for the evolution of the one-particle distribution function f+  and 
the p-particle correlation functions gp are considered in Section 6. The 
effects of truncation on the pth level and the convergence toward the exact 
solution are studied numerically. Near the equilibrium fixed point the exact 
solution can be linearized as done in Section 7, showing the decay of the 
correlation functions. It turns out that the p-particle correlations decay 
p times faster than the nonequilibrium one-particle distribution. This con- 
firms the assumption that higher correlations become increasingly unim- 
portant when a system approaches equilibrium. The conclusions of the 
paper are summed up in Section 8 and some details of the calculations are 
presented in the appendices. 

2. T H E  M C K E A N  M O D E L  

McKean/3'7'sl considered a system of N particles that can move with a 
constant velocity ei= +1. The probability of the interaction between two 
particles in the time interval dt is 

P = (2/N) dt 

If the interacting particles i and j have the velocities ei and ej initially, they 
will have the velocities e* and e* after the interaction with equal 
probability �89 

e *  =  ,ej l e t  = ej 
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or, more explicitly, 

+ 1 , + 1  
+1, + 1 ~  

+1, +1 

- 1 ,  + 1 ~  ''-" - 1' - 1  

~ - 1 ,  +1 

+1, - 1  
+1, - 1 ~  

- 1 ,  - 1  

1 , - 1  

Two particles having initial velocities + 1 will remain in this state after the 
interaction. The situation is completely different if the two particles move 
with velocities -1 .  Therefore, the interaction is not invariant with respect 
to time inversion. Let p(el, . . . ,  eN; t )  be the probability of the N particles 
having velocities el,..., eN at time t. This function is called the N-particle 
distribution function and it is normalized according to 

p(el, . . . ,  eu;  t )=  1 (2.1) 
el,...,eN= +1 

We restrict ourselves to distribution functions that are symmetric in all 
variables. 

The reduced p-particle distribution functions are defined according to 

f p ( e l , . . . , e p ; t ) =  ~ p ( e l , . . . , e x ; t  ) (l~<p~<N) (2.2) 
ep~l,...,eN= +1 

With the interaction defined above, we obtain a kinetic equation for the N- 
particle distribution function 

0 
~tP(e~ ..... eN; t) 

1 
- N 1 ~ EP(el,..., ei ..... eiej ..... e N ;  t) 

+ p(e l  ..... eiej,..., e/ ..... eN; t) 

- - 2 p ( e l  ..... ei ..... ej,..., e N ;  l ) ]  (2.3) 

It can immediately be seen that this equation conserves the normalization 
(2.1). A kinetic equation for the reduced one-particle distribution function 
f~ can be derived from (2.3) and (2.2) by summation of (2.3) over velocities 
e2 , . . .  , e N �9 

c~fl(e l; t) N - -  1 
- Z [ f z ( e l , e l e 2 ; t ) + f 2 ( e l e z ,  e2; t) 

Ot N e2= +1 

- 2f2(el, e2; t)] (2.4) 
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We decompose f2 into a part that factorizes into a product of two one-par- 
ticle distribution functions and a remainder, which is the (irreducible) two- 
particle correlation(I): 

f2(el, e2; t ) = f l ( e l  ; 1)jq(e2; t )+  g2(el, e2; t) (2.5) 

TO close Eq. (2.4), we neglect the two-particle correlations completely: 

g2(el, e2; t ) = 0  (2.6) 

Taking also the limit N ~  oo in (2.4), we then obtain the Boltzmann 
equation of the McKean model: 

8fl(e~;t) 
- -  - f l ( e ~  ; t ) [ f l (e l  ; t) + f l (  --el ; t)] 

0t 

+[f~(e l ; t ) f+ + f~(--el; t ) f_]--2f~(e~;O (2.7) 

where 

f+ =fl(e,  = 1; t) 

with the normalization condition 

and f = f,(el = -1" t) (2.8) 

(2.9) 

to the assumption of 

This equation can be solved (3"7~ 

1 [  
f+(t) =-~ 1 -t 

with 

For t--, o% we obtain 

Ae-t  ] (2.11) 
1 - A ( 1 Z e  ~) 

A = 2f+ (0) - 1 

1 
/ + ( ~ )  = ~  if f+(O) g: 1 (2.12) 

f+  + f  =1  

These approximations are of course equivalent 
molecular chaos: 

lira f2(el, e2; t )=  [ lim f l (e l ;  t ) ] [  lira fl(e2; /)] 
N ~ o v  N ~  N ~ o o  

If we choose el = 1 in (2.7) and use (2.8) and (2.9), we obtain an equation 
for f+  : 

Of+(t)/~t= [2f+ ( t ) -  1] i f+  ( t ) -  1] (2.10) 
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and 

f+(oo)=f+(t)=l if f + ( O ) = l  (2.13) 

In fact, the two possible values of f+(oo)  are the two fixed points of Eq. 
(2.10), since the equation 

is satisfied by 

[ 2 f + ( t ) -  1 ] [ f + ( t ) -  1] = 0  

1 
f+(t) = ~  and f+(t)= 1 (2.14) 

In order to decide whether the fixed points are attractive or repulsive, we 
linearize (2.10) about the values �89 and 1. We obtain 

1 
~(t)=-e(t) for ~(t)=f+(t) 2 

~(t)=e( t )  for ~(t)=f+(t)- 1 

(2.15) 

where e(t) is infinitesimally small. The positive eigenvalue + 1 corresponds 
to the repulsive fixed point f+  ( t )=  1, which is therefore unstable, while the 
negative eigenvalue - 1  corresponds to the attractive fixed point f+  = �89 
which is the equilibrium point of the system. 

3. H I E R A R C H Y  E Q U A T I O N S  FOR T H E  R E D U C E D  
D I S T R I B U T I O N  F U N C T I O N S  

To go beyond approximation (2.6), we must derive equations for 
higher reduced distribution functions. In general, the equation for the 
reduced p-particle distribution function is obtained by summation of 
Eq. (2.3) over velocities ep+ ~ ..... eN. This leads to a coupling to the reduced 
(p + 1)-particle distribution function. In this way, we obtain the BBGKY 
hierarchy equations of the McKean model. 

The first three equations of the hierarchy are 

•fl(el) 
~t 

N - 1  
N ~ [f2(e~, e~e2) 

e2~ +1 

+ f2(el e2, c 2 ) -  2f2(e 1 , e2)] (3.1a) 

822/46/1-2-19 
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Of2(el, e2) 
8t 

1 
[f2(ex' ele2)+f2(ele2, e2)] 

N - 2  
q - - - ~  E [f3(el, e2, ele3) 

e3 = + 1  

+f3(ele3, e2, e3)+f3(el, e2, e2e3) 

2 N -  3 
+ f3(el, e2e3, e3 ) -  2---~Z-ff3(ej, e2, e3)] (3.1b) 

0J;(e,, e2, e~) 
8t 

1 
[f3(el, ele2, e3)+f3(ele2, e2, e3) 

N 

+f3(e~, e2, ele3)q-f3(ele3, e2, e3) 

+.f3(el, e2, e2e3) +f3(e~, e2e3, e3)] 

N - 3  ~+ [f4(el e2, e3 ele4) 
+ N e4 = 1 

+ f4(el, e2, e3, e2e4)+fa(el, e2, e3, e3e4) 

+f4(ele4, e2, e3, e4) + f4(el, e2e4, e3, e4) 

N - 2  1 + f4(el, e2, e3e4, e4)-6-~--~f4(el ,  e2, e3, e4) (3.1c) 

The time dependence of the fps has been suppressed for simplicity. In the 
limit N ~ o v  the BBGKY hierarchy converges to the Boltzmann 
hierarchy./4 6) Taking this limit, we obtain from Eqs. (3.1) 

8 
8tJ~(e ~ ..... ep;t) 

P 

= E Z Ef,+l(el,...,e,,-.,e,e,+l;t) 
i =  1 ep+ 1 = + 1  

+fp+l(el,..., eiep+l,..., ep+l; t)--2pJp+l(el,..., gp+l; t)] (3.2) 

The usual way to handle a many-particle problem is to decompose the 
reduced distribution functions into their irreducible parts and to calculate 
the time evolution of these functions. Therefore, we use the cluster 
representation: 

f2(el, e2) = f l (el) fl(e2) + g2(ej, ez) (3.3a) 
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f3(el, e2, e3)=f l (e l ) f~(e2)f l (e3)+ fl(el)  g2(e2, e3) 

+fl(e2) gz(el, e3)+fl(e3) g2(el, e2) 

+ g3(el, e2, e3) (3.3b) 

where g2 and g3 are the two- and three-particle correlation functions. 
Because of Eq. (2.2), the p-particle correlation function must satisfy 

the condition 

gp(e, ..... ep) = O, 1 <~ k <~ p (3.4) 
ek = • 

Since any e~ can only take the values _+ 1, we obtain the relation 

g,,({ep} = { + 1 } ) =  ( -  1)J g~({ep_ j} = { + 1}, {eJ} = { - 1}), j<~ p 

(3.5) 

~ +  gp  

(3.7b) 

where {ep} stands for the p-tuple el,..., ep. 
This result reduces enormously the number of quantities that must be 

calculated in order to solve the many-particle problem. It means that the 
absolute value of the p-particle correlation functions is independent of the 
velocity direction of the various particles. Therefore, we only need to deal 
with the hierarchy equation for the p-particle distribution function where 
all p velocities are + I. This equation contains all the independent quan- 
tities that are necessary to calculate the various reduced distribution 
functions. 

We obtain from Eq. (3.2) 

tfp({ep} = { + 1 }) 

= p[2fp+~({e~+l}={+l})+f,+~({ep}={+l},ep+~= - 1 )  

q-L+  l({ep_ i } ~- {-}-1}, e p = e p §  I = -1)-2fp({ep} = { +1 })] 

(3.6) 

The reduced distribution functions fp occurring here can be expressed in 
the cluster representation analogous to Eqs. (3.3): 

fp({ep}={+l})=fP++ ~ f~+gp ,+gp (3.7a) 

fp({ep ~}= { + l } , e p =  --1) 

= f ~  ' ( i - - f +  )--i_~; (P)f~+gp-t§ i~; (Pp--_li)f~+-ag p 
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fp({ep_2}={-I-1},ep l = e p =  - 1 )  

= f ~  2(1 _f+)2 + 2.=, f+ gp-, 

- p - 2  --2P~2(p--li)fi+--lg \ P - -  i-~-i<(p__i)f?2g p i-~-gp (3.7c) 

In this way, every reduced distribution function can be expressed in terms 
o f f +  and gj with j ~  p. 

Insertion of Eqs. (3.7) in (3.6) leads to 

= p(2fp+ 1 _ 3fp  + fp+  1) 

+ i__~ l 2p p +1  Z'+ ~ P  2 1  f ~ - I x "  i + 1  

p 1=2 ( I;--1' ` 2 1 /  - T ~ ] 2 P ( p )  + =~" p }f+ gp-,+l -= f+gp i-2p(gp-gp+l) 
(3.8) 

As shown'in the next section, this can be regarded as an equation coupling 
the p-particle correlation to the (p + 1)-particle correlations. 

4. H IERARCHY EQUATIONS FOR THE p-PARTICLE 
CORRELATION FUNCTION 

To demonstrate how Eq. (3.8) can be solved for the correlation 
functions, we deal with the first two hierarchy equations of (3.8): 

8 
p = 1" ~ f+  = 2f2+ -- 3f+ + 1 + 2g2 (4.1 ) 

2 p = 2 :  ~f++g2=4f3-6fz+2f++12f+gz-6gz+4g3 (4.2) 

Multiplication of (4.1) with 2f+ and insertion in (4.2) leads to 

c?t g2 = 2(4f+ - 3) g2 + 4g3 (4.3) 
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In the same manner, the equations for the higher correlation functions can 
be calculated: 

0 
(~5 93 = 3 ( 4 f +  - -  3) g3 - -  6g  2 ~- 6g4 (4.4)  

Ot g4 = 4(4f+ - 3) g4 - 8g2g3 + 8g5 (4.5) 

This regularity is no accident; we show by induction in Appendix A that 
the equation for the p-particle correlation function reads as follows: 

0t gp = p(4f+ -- 3) gp --  2 p ( g  2 gp , --  gp+  1) (4.6) 

The p-particle correlation couples to f+  and g2 and also to gp I and gp + 1" 

5. EXACT S O L U T I O N  OF T H E  B O L T Z M A N N  H I E R A R C H Y  

As shown by Spohn,/4'5~ an exact solution of the Boltzmann hierarchy 
(3.2) is 

.f~(e~ ..... ep;t)= U(dfl)B [I [f,(ei;t)]B (5.1) 
i = l  

as c a n b e  checked by insertion in Eq. (3.2). Here the subscript B indicates 
that the one-particle distribution functions [f l (e i ;  t)]B on the right-hand 
side of (5.1) are the solutions of the Boltzmann equation (2.7). Thus, the 
exact reduced distribution functions may be interpreted as the moments of 
the various solutions of the Boltzmann equation. Their initial values are 
uniquely determined by the nonnegative probability measure I~(df~)B,  

which is defined on the space of the one-particle distribution functions. If 
molecular chaos is assumed initially, the probability measure is a 6- 
function, the reduced distribution function factorizes into a product of one- 
particle distribution functions, and Eq. (5.1) shows that this factorization 
holds for all times. This is known as the propagation of molecular chaos. 
On the other hand, if the correlations do not vanish initially, the width of 
the measure will represent the contribution of the various correlations, and 
the reduced distribution are statistical solutions of the Boltzmann equation. 
To make these statements more precise, we choose the probability measure 
as a rectangle distribution with a width b - a (0 ~< a < b ~< 1) and a height c. 
These parameters are connected through the normalization condition 
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which yields here 

c = 1 / ( b  - a )  (5.2) 

As shown in the previous section, we can restrict ourselves to the reduced 
distribution functions where all velocities are + 1. In this case the initial 
value of the one-particle distribution function can be represented by a 
parameter x, defined in the interval [0; 1 ]. The mean value of the initial 
data of the p-particle distribution function is obtained from Eq. (5.1), 

e',  
f . ( {e .}  = { + 1 } ; t =  o) = c jo 

while the dispersion 

b p +  1 _ a  p + l  
x ~ d x =  - ( x P )  (5.3) 

(p + t )(b - a) 

o-(t = 0 ) =  ( < x > 5  - <xp 52) ~'2 

represents the contribution of the correlations. 
Since the solution of the Boltzmann equation (2.10) is known 

analytically [Eq. (2.11)], we can calculate the integral in (5.1) explicitly for 
the one-particle distribution 

1 e ' e ' 1 - ( 2 b - 1 ) ( 1 - e - ' )  
f + ( t ) = 2  2 ( l - e - ' )  c 4 ( 1 _  e , ) 2 1 n l _ ( 2 a _ l ) ( l _ e  ,) (5.4) 

Note that we have chosen a special class of probability measures charac- 
terized only by two parameters, namely the mean value and the dispersion. 
While the initial values of all p-particle distribution functions fv are uni- 
quely determined by this probability measure, not all physically admissible 
initial values of the fp with p > 2 are obtained with a special measure. In 
practice, one would probably like to determine the measure for a given set 
of initial values of the reduced distribution functions. Here we want to 
compare the approximate solutions of the truncated hierarchy with the 
exact solution of the Boltzmann hierarchy (3.2). For that purpose it is 
more convenient to obtain the initial values from a given probability 
measure. 

6. T R U N C A T I O N  OF THE H IERARCHY FOR THE 
CORRELATION FUNCTIONS 

Although we have found an exact equation for the correlation 
functions (4.6), we cannot solve them to all orders without approximation, 
because of the coupling between gp and gp + 1. In the following, we therefore 
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close the hierarchy (4.6) by truncation at various levels, study the time 
evolution of the one-particle distribution function, and compare the results 
with the exact solution (5.4). The first equation (4.1) for f +  has already 
been studied in Section 2 for the case g2 = 0. 

Let us now take the next step beyond that approximation and neglect 
g3 in the second hierarchy equation (4.3): 

~?f+/~?t = (2f+ - 1)(f+ - 1) + 2g 2 (6.1a) 

c3g2/c3t = 2(4f+ - 3) g2 (6.1b) 

We see at once that, if g2 vanishes initially, it will stay at later times, the 
two equations decouple completely, and there remains the Boltzmann 
equation (2.10). For ggvk0, an important feature of Eqs. (6.1) is the 
existence of an additional fixed point. The equations 

(2f+ - 1 )(f+ - 1) + 2g2 = 0 
(6.2) 

2(4f+ - 3) g2 = 0 

are solved not only for the values 

1 
g2 = 0, f+  = 1, f+  = ~ (6.3) 

already known, but also by the set 

3 1 
f +  = ~ and g2 = 1--6 (6.4) 

which is a saddle point, as shown in Appendix B. The coupled equations 
have been solved numerically. 

The trajectories of the system are shown in Fig. 1 for various initial 
values in the f + - g 2  plane. The existence of the saddle point means that 
there are initial values not leading to the equilibrium value f +  = �89 g2 = O, 
but to an increase o f f +  and g2 toward infinity, which is unphysical. 

We will now show that the admissible initial values for the correlation 
functions depend on the level of truncation. On the level of Eqs. (6.1), all 
values o f f +  and g2 within the dotted curve of Fig. 1 allow a probability 
interpretation for the reduced two-particle distribution. This function 
becomes negative outside the dotted curve for some values of its arguments. 
At higher levels of truncation the area of admissible initial values becomes 
smaller as the probability interpretation also of the higher distribution 
functions has to be ensured. In the exact solution (5.1) all p-particle dis- 
tribution functions are positive definite for all arguments. This allows us to 
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Fig. I. The f+-g2 plane in the approximation where g3 is neglected in the second hierarchy 
equation. There is an attractive fixed point at (�89 0), a repulsive fixed point at (1, 0), and a 
saddle point at (3, ~6)- The solid curves labeled by the initial values ( f + ( t  = 0), g2(t = 0)) are 
the trajectories of the system. The dashed curve separates the physical region below from the 
unphysical region above. Outside the area bounded by the dotted curve, the reduced two-par- 
ticle distribution function becomes negative for some values of its arguments. The dashed-dot- 
ted curve peaked at f+ = 0.5 bounds the physical initial values of the exact two-particle dis- 
tribution. 

ca lcula te  the admiss ib le  ini t ia l  values  for all  co r r e l a t ion  funct ions .  F o r  this 
pu rpose  we use the c luster  r ep re sen t a t i on  of the p -par t i c le  d i s t r i b u t i o n  

func t ion  (3.7a) in  the le f t -hand  side of Eq. (5.3) a n d  o b t a i n  for t = O  

where  the re la t ion  

1 
f+(r =0)=~ (a+b) 

is used, which  is o b t a i n e d  f rom Eq. (5.3) i f p  = 1. 
We  set P = 2 in Eq. (6.5) a n d  o b t a i n  

g2 = (b - f +  )2/3 

(6.6) 

(6.7) 
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In Eq. (6.7) the two-particle correlation becomes a maximum if the width 
parametrized by b is chosen as large as possible. Thus, we obtain for 
f+(t=O)>~�89 

and for f + ( t  = 0 )<  �89 

g2 = (1 - f+)2/3 (b= ]) (6.8a) 

g2 =f2+/3 (a = 0) (6.8b) 

where Eq. (6.6) is used to obtain Eq. (6.8b). Equations (6.8) are shown 
graphically by the dashed-dotted curve in Fig. 1. Thus, the area of initial 
values preserving a probability interpretation of the reduced two-particle 
distribution becomes considerably smaller if the higher distribution 
functions are also required to have a probability interpretation. 

Let us now go beyond the approximation of Eqs. (6.1) and truncate 
the hierarchy at higher levels. 

There the unphysical saddle point vanishes, as can be seen from 
Eq. (4.6), and all trajectories lead to the equilibrium point. It is remarkable 
that, if all correlations with the exception of g2 vanish initially, they will be 
created in time, whereas if g2 also vanishes at t = 0, no higher correlation 

.55- 

.54- 

.53- 

.52- 

.51 

.50" 

I i i I I I I [ I 

f ,  ( t=O)= 0.500 

g 2  ( [  = 0 ) = 0 . 0 8 8 3  

P 
I I I I I I I I i 

1 2 3 4 5 6 7 8 9 10 

Fig. 2. Time evolution o f f +  with initial values lying in the peak of the dashed-dotted curve 
of Fig. 1. The solid curves are labeled according to the number  of hierarchy equations taken 
into account. The dashed curve describes the exact solution corresponding to the initial values 
of the solid curves. 
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will be created at later times and the p-particle distribution remains a 
product of p one-particle distribution functions. This shows again the 
propagation of molecular chaos. 

Now we can study the convergence of the truncation method by com- 
paring with the exact solution in the McKean model. Figure 2 shows the 
time evolution of the exact one-particle distribution and its approximations 
obtained by truncating the hierarchy at increasing levels. 

The initial values for the correlation functions are calculated from 
Eq. (6.5). The probability measure is chosen as a rectangular distribution 
with a width over the whole range of the interval [0; 1 ]. This guarantees a 
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Fig. 3. Time evolution o f f +  with initial values lying on the right- and on the left-hand sides 
of the peak of the dashed-dotted curve of Fig. 1. The solid curves are labeled according to the 
number of hierarchy equations taken into account. The dashed curves describe the exact 
solution corresponding to the initial values of the solid curves. 
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maximum contribution of the correlations. The initial values o f f +  and g2 
corresponding to this measure are exactly on the peak of the dashed-dotted 
curve in Fig. 1. As shown in Fig. 2, the convergence of the approximations 
obtained by the truncation method toward the exact solution is rather bad. 

One might query whether the convergence properties are influenced by 
the saddle point occurring in the approximation where g3 is neglected in 
the second hierarchy equation. To investigate this question, we have chosen 
two sets of initial values. One set lies near the saddle point on the right 
branch of the dashed-dotted curve in Fig. 1, the other lies far from the 
saddle point as the left branch of this curve. The weight of correlations, i.e., 
the width of the rectangular distribution, is the same for both sets of initial 
values. It is shown in Fig. 3 that the convergence is much better for initial 
values lying far from the saddle point in the f+  g2 plane than for those 
lying near the saddle point. Thus, the saddle point has an influence on the 
convergence of the truncation method even in approximations in which it 
no longer exists. 

7. D E C A Y  OF T H E  p - P A R T I C L E  C O R R E L A T I O N S  

In the McKean model we are now able to confirm the assumption that 
the correlation functions decay faster than the one-particle distribution 
function tends to the equilibrium, i.e., they become increasingly less impor- 
tant for the description of a many-particle system near the equilibrium. (2) 

We therefore rewrite Eq. (5.1) for the case where all particles have 
velocities + 1 and insert the solution of the Boltzmann equation (2.11) in 
the right-hand side of Eq. (5.1). In addition, we use Eq. (3.7a) to calculate 
the time evolution of the correlation functions and obtain 

f~+(t)+ ~ f +(t) gp i(t)+gp(t) 
i = l  

= /x(df+(0)) 1 + 1 - A ( 1  - e  ' ) J J  (7.1) 

Since we are interested in the vicinity of the equilibrium point, which is 
reached for t--+ 0% we linearize the left-hand side of Eq. (7.1) around this 
point and neglect the exponential term in the denominator of the right- 
hand side: 

i=o k i /  

io { [2f+(O)~l]e-'; p (7.2) 
= 2  p #(df+(0)) 1-~ 2 [ 1 - f + ( 0 ) ]  J 
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where e ( t ) = f + ( t ) - � 8 9  and qp(t)=gp(t), I~1, I~141. This formula can be 
brought into a more compact form: 

2t-Ppe+ 2-itlp i = 2  p ~ 2-(p- i )Mp_i  e (p-m (7.3) 
i=0 

where the abbrevation 

1 FRf+(O)__l]P--i 
Mp i=fo ~ (dJ'+ (0)) 1_ i - ~ - ~ +  (0 i A 

has been used. 
Equation (7.3) is solved by 

1 
~(t) = ~ M 1 e - '  (7.4a) 

rlp(t) = (Mp/22p) e p  ̀ (7.5a) 

which can be verified by insertion. 
Thus, we see that the p-particle correlations decay p times faster than 

the one-particle distribution tends to the equilibrium value. This can of 
course also be shown by truncation of Eq. (4.6) at the pth level and 
linearizing the whole system around the equilibrium point. In this way the 
solution of the set of coupled nonlinear differential equations is reduced to 
a linear eigenvalue problem which can be solved exactly. 

8. C O N C L U S I O N S  

We have shown that the McKean model is not only useful for a study 
of the one-particle properties of a many-particle system, but also allows an 
investigation of the p-particle correlations. 

We transformed the BBGKY hierarchy of the McKean model into a 
simple system of coupled differential equations describing the time 
evolution of the p-particle correlation. 

We determined the exact solution for the reduced distribution 
functions of the McKean model using the methods of Refs. 4-6 and com- 
pared the exact solution with the results of the truncation method at 
various levels. 

Neglecting correlations of more than two particles leads to an 
unphysical saddle point, which vanishes again if more than two hierarchy 
equations are taken in account. The initial values that are acceptable for a 
physical interpretation of the various reduced distribution functions depend 
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on the level at which the hierarchy is truncated. The coupled equations 
have been solved numerically up to p = 60 and the convergence of the one- 
particle distribution toward its exact shape has been studied. The effects of 
the higher correlations are particularly important in the vicinity of the 
unphysical saddle point in the f+-g2 subspace because the convergence of 
such one-particle distribution functions is much worse than for those that 
evolve far from the saddle point. 

For long times, the system approaches an equilibrium fixed point and 
the exact solution can be linearized showing the decay of the various 
correlations. 

The p-particle correlations decay with relaxation times "C(gp)= lip that 
are shorter than the relaxation time r ( f + ) =  1 of the one-particle dis- 
tribution function. Higher correlations thus become increasingly unimpor- 
tant for an aged system. Our results confirm the conjecture of Kac (7) con- 
cerning the eigenvalues of the kinetic equation for the N-particle dis- 
tribution function. 
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A P P E N D I X  A 

To prove Eq. (4.6), we rewrite Eq. (3.8) in the form 

8 - gp] 

= p ( z f p +  +~ - 3 f ~  + f U  ') 

P-32PP+l(~) " 7-] (1~) + • 7+T f'++lgp-i-- E 3p f+gp-i 
i = 1  

ii (;) + ~ i f~+~gp ~+pZ(p+l)fP+ ~gz+2p(p+l)f+gp 

- 3pgp + 2pgp + 1 
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where all binominal coefficients have the form (P). On the other hand, we 
can calculate the first two terms of the left side of (A.1), 

?t . i f i + l ~  +f~+ Ot / (A.2) 

with the help of (4.1) and with the induction assumption 

0g& i = (p - i)(4f+ - 3) g p _ , -  2(p - i) gp - - i - - 1  g2 + 2(p - i) gp ,+, (A.3) 

which is already valid for gp, p = 2, 3, 4 [see Eqs. (4.3)-(4.5)-]. This leads to 

= p(2fp+l_3fp+ + f p  , ) + p 2 ( p +  1)fp+_lg2 

(:) (:) +2pg, lg2+ 2 2(2p-i) f++lg~ , -  3p f+&_, 
i = 1  

+ ~ i f + l g p  ,+ 2 2 ( p - - i - - 1 ) ( p - - i )  
i = l  i = 1  i + 1  f++lgP-i 

+ 2p(p - 1) f+  gp (A.4) 

We obtain by subtraction of (A.4) from (A.1) 

& gp = p(4f+ - 3) gp - 2pgp --1 g2 "~ 2pg~, + 1  (A.5) 

which confirms the induction assumption. 

A P P E N D I X  B 

We want to show by linearization Eqs. (6.1) around the various fixed 
points that 

(i) f +  = 1, g2 = 0 is a repulsive fixed point 

(ii) f +  = �89 g2 = 0 is an attractive fixed point 

(iii) f +  = 3, g2 = ~6 is a saddle point 
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(i) e = f +  - 1 ,  g2=~ (1~1, I~1 ~ 1): Insertion in (6.1) leads to 

( ; )  = (10 ~2)(;) (B.11 

The eigenvalues of this matrix are positive 

21 = 3, 22 = 2 

which means that the solutions of (B.1) increase with the time and the fixed 
point can never be reached. 

The complete solution of (B.1) is therefore 

(ii) e = f + -  �89 g2 = t/: This leads to 

(;)=(o' 
with the eigenvalues 

)vl = - -1 ,  22 = - 2  

In contrast to (B.1), these eigenvalues are negative, leading to an exponen- 
tial decay of e and r/, which means that the fixed point is reached for t -* oo. 

The solution is 

and we obtain that the decay of r/is much faster than that of e. 

(iii) e = f + - ~ - ,  q = g2-1~: This leads to 

(;):(0 
with the eigenvalues 

/~1 = 1, 22 = - 1  

showing that this point is a saddle point. 
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From the solution 

we obtain one direction in the f+-g2  plane that is repulsive and one that is 
attractive (see Fig. 1). 
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